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resistors: a non-linear law of large numbers 
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Centre de Physique Theoriques, CNRS-Luminy, case 907, F-13288 Marseille, Cedex 09, 
France 

Received 13 May 1988 

Abstract. We study rigorously the resistance and fluctuation of resistance of a large 
deterministic fractal lattice in the limit of an infinite number of resistors. We give estimates 
on corrections to the effective medium approximation of the total resistance. We prove 
scaling laws for the relative fluctuation, and prove that the normalised relative fluctuation 
converges in distribution to the standard normal variable. This is a kind of non-linear law 
of large numbers. 

1. Introduction 

I n  this paper we investigate rigorously an  example of a fractal network of random 
resistors. The motivation can be found in recent work by Giraud et a / [  1,2], measuring 
flicker noise of the determinstic fractal lattice ( DFL),  a model proposed by Kirkpatrick 
to mimic some properties of percolation clusters in random media and disordered 
systems [3,4]. Our goal is to study theoretically the influence of noise on the same 
lattice. 

We will restrict ourselves to the case for which the resistances of each branch of 
the network are independent identically distributed positive random variables and  we 
would like to compute the behaviour of the total resistance as the size of the network 
goes to infinity. We will give exact corrections to an  effective medium approach [5-81 
produced by fluctuations of the average resistance. We will also study the variance of 
the fluctuation which is related to the magnitude power spectrum of flicker noise. We 
prove rigorously that scaling laws obtained from a first-order calculation hold [9-121; 
however we produce exact correction to the leading terms. 

On the other hand, in the limit of infinitely many resistors the fluctuation actually 
decreases to zero fast enough to allow a linear theory to hold. As a result the total 
normalised fluctuation will converge in distribution to the standard normal variable, 
even though the total resistance is a non-linear function of the individual ones. 

From some recent experimental results it seems that the l / f  law dependence of 
flicker noise may be due to fluctuation of microscopic local resistance [13-161. This 
explains the recent interest of random resistor network [9, 12, 13, 17, 181, where most 
studies also concern the effect of geometrical self-similarity on electrical noise in a 
macroscopic resistor network. 
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Figure 1. The recurrence definition of the equivalent circuit of the direct current determinis- 
tic fractal lattice. 

The deterministic fractal lattice itself which is well defined in [3, 4, 191 is built out 
of the equivalent circuit defined recursively by figure 1. 

Let R, be the random resistance at each step n of the lattice, and (R,) and (T, be, 
respectively, the mean value and the variance of R,. Finally let p n  be the normalised 
fluctuation given by 

The main result of this paper is the following. 

Theorem. If Ro is a positive random variable such that ( R t )  < then: 
( i )  effective medium estimates: 

( a )  limn-,ac (z)"(R,) = R, exists and  (:)"R, converges almost surely to R,; 
( b )  (Ro)-:gOG RmG(Ro).  

( a )  limn->= (J) 2 
( b )  I(T,/oo-ll/sO((+o) as a 0 - t O ;  
(c)  the sequence p, of the normalised random variable converges in distribution 

(ii) If, in addition, (R i )<m,  R,>O and a,>O then 
2 n n / 2  U, = U= exists; 

to the standard normal variable. 

We organise the paper as follows: in 0 2 we compute fluctuation laws and  some 
moment inequalities; in 0 3 we give a strong law of large numbers for R, and we study 
the behaviour of the variance; in 0 4 we study the normalised variable pn.  

2. Fluctuation law and moment inequalities 

2.1. Fluctuation law 

For deterministic resistors (cf figure 1)  Ohm's law gives immediately 

R, = ( i )"Ro.  
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Writing the resistance at each step of the recursion as R, = hnrn with A,, = (i)‘(R0) 
and r,, a positive random variable, we obtain recursively 

where r\”, r!,’), rk2’ are independent identically distributed 
We denote by s,, the variance relative to r, defined by 

s’, = ((r’ ,)-(r, ,)2).  
We have therefore U,, = A,,s,,. 

We define A,,, Z,, and P,, as follows: 

For any n we get 

(2 .1)  

positive random variables. 

2.2. Moment inequalities 

We want to compute some inequalities between moments of r,, . 

Proposition 1 .  Let a be real. 
(i)  If max r 0 s  a then r,, s a for all n. 
( i i )  If min r o 2  a then r, 2 a for all n. 

Proofi By induction it suffices to prove that if r! , ‘ )S (or 2) a ( i  = 0-2) then r, , ,  c (2) 
a. We remark that 

r,,+l = f(rjp), r ; ) ,  rL2’) 
where 

is a non-decreasing function of each variable. Therefore 

x s  a, y s  a, 2 s  a * f(z,y,  x ) s f ( a ,  a, a )  = a  

and the same is true for the lower bound. 
This result may hold for a general network, as one can easily verify. 

Lemma 2. If r, is positive then 0 s  A, ~ : l ( r L ” -  rL2’)1. 

Proof: This is simple due to the fact that, for two non-negative real x, y ,  

/ x  - y J  x + y .  
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Proposition 3. Let p be  a number such that ( rg)  exists. Then for all n and  for all j s p 
( r i )  exists. Moreover 

(i) if ( r , )  exists then ( r , , )  is a decreasing sequence; 
( i i )  if ( r i )  exists then 

( r i + , ) s  min(8( r3+(r , , )2) ,  4 ( 4 ( r 3 + 5 ( r n ) 7 )  

and ( r i )  is also a decreasing sequence. 

and  p ( p )  such that ( r : + l ) s  a ( r : ) + P ( p ) .  
(iii) For any p 2 2 such that ( r : )  exists. There are two positive real numbers a s 

Proof: From (2.1) one deduces easily that 

s ( 3 ) p ( [ r l p ’  +a(r(nl’+ r y ’ ) ]  P )  

where one obtains (i)  and  a part of (ii) and ( i i i )  for p = 1 and p = 2, respectively. Now 
using proposition 1 and  lemma 2 one gets 

where one  obtains immediately the desired result of (ii) of proposition 3. From the 
binomial expansion and  some elementary inequalities one obtains 

(r:+l) s (f)”[ 1 +2(t)P](r:)+ [ ( $ ) p  - ( + I P  - 1 ] ( 1  + ( r ; - ’ ) Y } .  

Assuming by induction on  p that SUP,, ( r : - I )  = p < CO we get (iii) by identifying a with 
($)p[1+2(a)p] and p ( p )  to [ l - ( f ) P - ( f ) P ] ( l + p ) 3 .  Then it follows that sup, ( r i ) <  
2p + a( rg) which is finite if ( r g )  < a, leading to the conclusions. Let ( r , )  = rr . 
This obviously means also that R ,  = (Ro)r,. From the previous lemma one obtains 
corollary 4. 

Corollary 4.  If ( r , )  exists then 

r = = ( r O ) -  C (A,,) 
n =O 

where the series converges. 

Remark 1 .  It is important to note that, even if we consider ( r o )  = 1 ,  we cannot have, 
for all n, ( r , )  = 1 .  But by proposition 3 clearly we will have ( r , ) s  1 ,  where the equality 
holds only for a Dirac probability density. The term X:=, ( a , ) ,  due  to the non-linearity 
of the network, brings a correction to an  effective medium approach which gives only 
the leading term of r x :  (r , ) .  One can verify that in the simple case where r, takes two 
values with probability 0.5, (A,) and ( A , )  are different to zero, so that 2:=, (a , , )  # 0. 

Remark 2. From corollary 4, we d o  not know whether r,  > 0 or if r,  vanishes unless 
U, is small enough. We have not been able to eliminate the possibility that rx = 0 for 
high values of go. If r, = 0 the dominant contribution to R,  as n tends to infinity is 
not given by ($),, constant, but is corrected by the effect of large fluctuation. We will 
assume that r ,>O in the following; a sufficient condition for it is that go be small 
enough as we will see in the next section. 
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3. Convergence of R, 

3.1. Upper and lower bound of thejirst and second moment of A ,  

Proposition 5. I f  ( r i )  exists then 

( i i )  ( A ' , ) s & s ' , .  

In  addition, if rJ: # 0 then 

2 s i  
( i i i )  ( A , ) S -  -. 

3 rx  
(3.3) 

(3.4) 

Proof: From lemma 2 one gets for all p 

A : s [ i l ( r ! , " -  r! ,2) ) l ]J '  

leading to (2.2). Using the Cauchy-Schwartz inequality (3.1) follows for p = 1. 
On the other hand, let a be a positive number such that, for all n, ( r , )  - a > 0. Then 

( A : )  S (A!!,,y[s,,(p!,"+ p:')) S - 2 a ] )  +(A:,y[sn(p!,"+ p',") 2 - 2 a ) )  

where x ( A )  is the characteristic function of the set A .  Thus 

Applying the Cauchy-Schwartz inequality and using proposition 3, one obtains forp = 1 

and for p = 2 

Taking a = i r x  one easily obtains (2.3) and (2.4). 



4542 C D Essoh and J Bellissard 

3.2. Weak estimates on the variance 

Lemma 6. If  ( r ; )  exists then for all n 
- 7 2  2 
, 8 S n  c S n + 1  s ;s i .  

( ( s n + 1 p n + 1 I 2 )  = ( P ; )  - 2 ( P n Z n )  + (2;). 

(Pi)  = 4s: 

I ( P n z n ) l =  I(dsn(p',"+p!?)An)I. 

ProoJ: From (2.2) one has 

By direct computation one finds 

and 

Applying the Cauchy-Schwartz inequality to the last equality and (3.2) one gets 

I (PnZn) I  

and obviously 
O S  (z;)  = ( A ; )  - ( A , ) ~  s (A ; )  s +;. 

These estimates lead to lemma 6. 

3.3. Lower bound of r, 

Using corollary 4 and lemma 6 one gets the following proposition. 

Proposition 7. If ( r i )  exists then 

3v?+2A 
6 SO * rx  3 (ro )  - 

By multiplying the relation of proposition 7 by (Ro) ,  one obtains obviously 

From propositions 1 and 7 one obtains two sufficient conditions for rI  f 0. 

3.4. Convergence of r, 

Theorem 8. If (r:)  exists then rn converges almost surely to r,. 

ProoJ: By the Borel-Cantelli lemma and the Tchebyshev inequality [20-231 it suffices 
to show that 

C ( I r n - r m I ) < a .  
We have 

( I  r n  - rx .I) s 1 (I rn - ( r n ) I )  + 2 (I(rn) - r s  .I) 

where in the last inequality we have used (3.1), so that the conclusion follows from 
lemma 6. 
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In other words this theorem means that ( j )"R, ,  converges almost surely to R, .  AS 
a result, when the system is large, fluctuations are small so that the value of the total 
resistance of the network is almost constant. However it differs from the value obtained 
by taking the equivalent resistance of the average value of the individual resistance of 
the network. 

3.5. Strong estimates on the variance 

Let us introduce the quantities 

Then we get a better estimate which will be useful in 0 4. 

Lemma 9. If ( r i )  exists and  r ,  # 0 then 
(i)  s f + , ~ t s ' , ( l + ~ ~ ( n ) )  
(ii) Z $ S ; ( I  - a 2 ( n ) ) .  

Proof: In much the same way, using (3.4) instead of (3.2) in the proof of lemma 6 one 
gets lemma 9. 

We will give in the next section some sufficient condition for S i (  n )  to be a general 
term for a convergent series. 

4. Convergence of the normalised variable 

4.1. Existence of the fourth moment of the normalised variable 

Let us denote 

u I  ( n  ) = .$ + gsn/ r ,  + 
u2( n )  = & + ~ s , / r , + ~ ( s , / r x ) 2  + E ( s , / ~ , ) ~ .  

s,/ r,)' 

Thanks to lemma 6, theses quantities converge to their constant term as n -f W. 

ProoJ From (2.2) one gets 

By a direct computation 
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Using the Holder inequality, lemma 2 and following the proof of lemma 6 one also 
computes the following inequalities: 

(z:) s s4,[&(p2) +&,+$(s,/ r , ) ’ +  8 s n /  r,141. 

The proof from there is straightforward. 

Lemma 1 1 .  If (p i )< ”  and r ,  # 0 then for all n there exist a constant C‘(r , ,  so, ( p i ) )  

( p : ) s  C ‘ ( r r ,  so ,  ( P 3 ) .  

ProoJ: Let us denote 

v1(n) = S?(P4n). 

Then by lemmas 6 and 9 one  shows by induction using lemma 18 (see the appendix) 
that there exists a constant c ,  such that 

v , ( n ) s c , s , .  

Therefore from lemma 9 there exists no such that for all n 3 no 

“9 s, ( c  I n  s ) I / ? - -  - > o  l a  
i ( 1 - S 2 ( n ) ) a - - -  

2 9 r ,  9 r x  

so that 

Using lemma 1 8  again one gets the result. 

A direct consequence of the lemma is the following corollary. 

Corollary 12. If ( p i )  < CD and r ,  # 0 then E:= I S,( n )  <cc for i = 1, 2. 

Remark 3. From the previous corollary n ( 1  + S,( n ) )  converges. Thus s, = (~)“c,s0 
where c, converge to a finite non-zero constant as n -00. 

4.2. Behaviour of the relative Jluctuation 

The so-called ‘relative fluctuation’ is defined by 
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It is easy to compute from here that the relative fluctuation is related order by order 
to r, and s, by 

From corollary 12 and lemma 9 one finds immediately the next proposition. 

Proposition 13. If ( r i )  exists and  r ,  # 0 then limn-,, 2”S, = S ,  exists. 

Remark 4. It is clear from propositions 3 and 11 that S ,  # So. Using the Rammal et 
a1 association law [ l l ]  we would have found S,  =(; ) “So,  namely S , = S o .  The 
difference between these two terms is due to the fact that 2(p,Z,) # (Zi )  in our case. 
Nevertheless the limit in proposition 1 3  exists because as we have shown (P,Z,) and 
(Zi )  can be neglected with respect to ( P i )  = 4s; 5 as n goes to infinity. 

4.3. Convergence of p n  

Let F, denote the characteristic function of pn and let us set o , ( n )  ( i  = 1 - 3 )  as follows: 

o l ( n )  =Js,/s,+I 

0 2 ( n )  = o j ( n )  = B s n / s n + I .  

If we also define 6F, by 

6F, ( t )  = Fn+l ( t - F, ( 01 ( n t )  Fn ( o A  n 1 t )  F, (o3( n 1 t )  (4.1) 

then we get lemma 14. 

Lemma 14. If ( p : ) < o ~  and rm# 0 then there exists a constant c such that for all t 

I 8F , ( t ) l s  c t 2 ( s , + s i ) .  

Proof: From the Taylor expansion one obtains 

from which, using ( 3 . 4 ) ,  one easily obtains lemma 14 by identifying c with 

which is finite by lemma 1 1 .  

For j 2 1 let B, be the set (1, 2,3}”’. 

Lemma 15. If ( p : )  < and r ,  # 0 then 

(a i f a < 2  
i f a = 2  
if a > 2. ( 1 1 . 1 2 .  , t i  )E B i  
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ProoJ: One easily gets by induction that 

[ o 1 , ( n + k - 1 ) ~ 1 ~ ( " + ~ - 2 )  9 * * o ~ h ( n ) l "  = [ ( ~ ) " + 2 ( 6 ) " l ( s , / S , + k - l ) "  
(11.12, . l h ) E B h  

Using lemma 9 and corollary 12 one obtains the desired result 

Lemma 16. If ( lp, i3)  exists then for all f IF,,(f)  -exp(-r2/2)1 sblt13(Ipn17)+Qr4. 

Proof: As p,, is normalised one  has 
IF,,(t)-exp(-t2/2)1 =I(exp(itp,) - 1 - i t p , + % t 2 p 2 , - ( e x p ( - t 2 / 2 ) -  l+f t ' ) ) l  

But one shows [23] by integration by parts that 
lexp(itp,,) - I -itp, +it2p2,1 s min ( t2p2,, I ; ~~~ ' , I ) .  

On the other hand, by the fundamental formula of calculus we get 

lexp(-t2/2) - I + i t 2 /  s min ( l a r 3 i ,  i t 4 ) , .  

The proof is therefore straightforward. 

Theorem 17. If (p:)  < m and r3: f 0 then the normalised variable of the fluctuation 
converges in distribution to the standard normal variable. 

ProoJ: It will suffice to show that the characteristic function F,, of the normalised 
variable tends to exp(-t2/2) when n goes to infinity [21-231. By iterating the procedure 
begun in (4.1), one computes that for all non-negative k If,. k ( f ) -  fl Fn([oi , (n+k-l) .  . . o ~ ~ ( n ) ] f ) l  

(11, , l A ) E B h  

k - 1  

9 ISFn+k- , ( t ) I+  C 18Fn([oll(n + k -  1 ) .  . . o,,(n - j ) ] t ) l .  
J = 1  ( 1 1 ,  . I , ) E B ,  

By lemmas 9, 10 and 14 and corollary 12, there exists a constant c such that 

1' 
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Now taking the limit first when n goes to infinity, then as k goes to infinity, using 
lemmas 15 and 9 one finishes the proof. 
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Appendix 1 

Lemma 18. Let a, b be two positive reals such that a < 1 and let U,, be a positive real 
sequence. If there exist a no and a constant c ,  such that c ,  = U,,, and for all n > no 

U,,,, s aU, + b 

then there exists a constant c2 such that for all n > no U,, c c2. Also 

The proof can easily be done by induction. 

Appendix 2 

Lemma 19. Let z, and z :  ( i  = 1-N) be two complex sequences such that for all 
ilz,l = 1z:I = 1 then 

This lemma and  its proof can be found in [ 2 2 ,  231. It can also be easily proved by 
induction. 
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